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We apply the eikonal approximation to the stochastic master equation for reaction-diffusion systems. Its
stationary solution is expressed as an excess work and is shown to be a Lyapunov function for the deterministic
evolution of inhomogeneous systems. From this result we establish a new stochastic criterion of relative
stability and equistability of systems with multiple homogeneous stationary states in terms of inhomogeneous
fluctuations.

I. Introduction

Chemical systems with nonlinear kinetics may have multiple
stationary states for given constraints that maintain the system
far from equilibrium. The relative stability of such multiple
stationary states has been discussed in prior studies.1-3 Consider
an experimental arrangement in which a system with two stable
stationary states and one unstable stationary state is maintained
in one of its stable stationary states (SS1) in one-half of a large
container (see Figure 1) and the other half contains the system
in its other stable stationary state (SS3). On removal of a
partition separating these two stationary states, a smooth
concentration profile will develop since the concentration of
any intermediate species in stable stationary state 1 is likely to
be different from that in stable stationary state 3. Then one of
three possibilities will occur: the profile will travel in the
direction of increasing the domain of the more stable stationary
state (either SS1 or SS3). However, at equistability of the two
stationary states, the velocity of the developed front is zero.
This result can be obtained from the solution of deterministic
reaction-diffusion equations and has been tested in experi-
ments.4,5

The deterministic reaction-diffusion equations have an
infinity of Lyapunov functions that are evolution criteria for
the deterministic motion, such as front propagation in either
direction in the system just discussed. In ref 1 we showed that
any Lyapunov functionΦ that can be expressed as an integral
along the deterministic path of the system correctly predicts
the observed relative stability of two steady states in the limit
of large systems. One such Lyapunov function is an excess
work Φdet, which has been defined by means of the deterministic
reaction-diffusion equations.6-11 Φdet is not a state function
but is fully defined along the deterministic trajectories. It is,
in general, not related to fluctuations in nonlinear systems, i.e.,
to stationary solutions of the stochastic master equations.

Stationary solutions of the master equations for multivariable
homogeneous chemical systems far from equilibrium can be
discussed, in the eikonal approximation, in terms of an excess
work Φ0, which is a state function, a Lyapunov function for
the stable stationary states of the system, and is, to logarithmic
accuracy, a solution of the master equation, as shown for
homogeneous systems of this kind.12-14

In the present work, we apply the eikonal approximation to
the stochastic master equation for reaction-diffusion systems

and, thus, extend the concept of the excess workΦ0 to such
systems. We show thatΦ0 is a stationary solution of the master
equation, a Lyapunov function for the deterministic evolution
of inhomogeneous reaction-diffusion systems, and a criterion
of relative stability for multiple stationary states in such systems.
Thus, we obtain an important new view of relative stability and
equistability of systems with multiple homogeneous stationary
states in terms of inhomogeneous fluctuations in these systems.

II. The System

We will briefly describe the reaction-diffusion system.
Consider as a sufficient example for any multivariable system
the isothermal Sel’kov model with rate coefficients and constant
concentrations of A and B chosen such that there are three
stationary-state solutions of the homogeneous reaction equations
(i.e., the rate equations with no diffusion terms). Two of these
states, (X1,Y1) and (X3,Y3), are stable and the other, (X2,Y2), is
unstable.

The equations given in eq 1 are for a system residing in one
spatial dimension. The extension to a three-dimensional system

is straightforward. The partial differential equations that
represent the reaction-diffusion equations for this model can
be transformed into ordinary differential equations by discretiz-
ing the spatial variablez into increments small enough that X* To whom correspondence should be addressed.

Figure 1. Initially (s) the left half of the system has the concentration
values of stationary state 1 and the right half of the system has the
concentration values of stationary state 3. At equistability, evolution
of the system according to the deterministic equations of motions leads
to the stable front (‚‚‚) shown.
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and Y are essentially constant in a given increment. Labeling
the various increments with the indexi and the increment∆z,
we have

and the deterministic reaction-diffusion equations become

To examine the relative stability of the stable steady states,
we take the requirement that the concentrations of X and Y at
the left side of the system are held fixed at the values of one
stable steady state and at the right they have the values of the
other steady state, i.e., (X0,Y0) ) (X1,Y1) and (XN+1,YN+1) )
(X3,Y3) for all t, as boundary conditions for the system. As an
initial condition, one-half of the system is given the value of
stable steady-state 1 (SS1) and the other half is given the value
of stable steady-state 3 (SS3) (see Figure 1). When the system
is allowed to evolve according to eq 3, a continuous front forms
at the point of discontinuity and, depending on the relative
stability of the stable steady states, travels without changing
form in the direction that creates the more stable state. If the
parameters dictate that the continuous front does not travel, the
system is said to be “at equistability.”

III. Eikonal Approximation to the Stochastic Master
Equation for Reaction-Diffusion Systems

The behavior of the two species in each of theN boxes
described in the last section is given by the 10N + 4 elementary

reactions in Table 1 and as a whole the system obeys the master
equation

where the sum is over the elementary reactions listed in Table
1, and we denote the set of concentration values(Xi, Yi) in the
N boxes as vectorsWB and YB. W(XB,YB;rbx,rby) is the probability
per unit time of a transition from(XB,YB) to (XB + rbx,YB + rby).

According to the eikonal (instanton) approximation, the
stationary distribution about thenth attractor (stable state of
the entire system) is given by

wheresn is obtained by solving Hamilton’s equations of motion
for the HamiltonianH.

Here we have defined the symbols

and

and the dot product has the usual vector meaning given by

The sum is over values for allN boxes. Ω is the volume of
the system. These equations of motion have the form

where the sum overrx and ry is a sum over all elementary

TABLE 1: Elementary Reactions for a Sel’kov Model
System Distributed in One Dimensiona

elementary reaction rx andry W(x,y; rx, ry)

A f Xi rx,i ) +1 k1A
Xi f A rx,i ) -1 k2Xi

Xi + 2Yi f 3Yi rx,i ) -1 k3XiYi
2

ry,i ) +1
3Yi f Xi + 2Yi rx,i ) +1 k4Yi

3

ry,i ) -1
Yi f B ry,i ) -1 k5Yi

B f Y i ry,i ) +1 k6B
X0 f X1 rx,1 ) +1 dXX0

X1 f X0 rx,1 ) -1 dXX1

Y0 f Y1 ry,1 ) +1 dYY0

Y1 f Y0 ry,1 ) -1 dYY1

X i f X i+1 rx,i ) -1 dXXi

rx,i+1 ) +1
X i+1 f X i rx,i ) +1 dXXi+1

rx,i+1 ) -1
Y i f Y i+1 ry,i ) -1 dYYi

ry,i+1 ) +1
Y i+1 f Y i ry,i ) +1 dYYi+1

ry,i+1 ) -1

a All reactions including species with an indexi denoteN reactions,
one for each box. The termsW are the transition probabilities in the
master equation, eq 4.

L ) N∆z zi ) i∆z z0 ) 0, zN ) L (2)

dXi

dt
) k1A - k2X i - k3X iY i

2 + k4Y i
3 +

DX

∆z2
(X i+1 - 2Xi + X i-1)

dYi

dt
) k6B - k5Y i - k3X iY i

2 - k4Y i
3 +

DY

∆z2
(Y i+1 - 2Yi + Y i-1) (3)

∂P(XB,YB;t)

∂t
) ∑

rx,ry

[W(XB - rbX, YB - rbY; rbX,rbY)P(XB,YB;t) -

W(XB,YB; rbX,rbY)P(XB,YB;t)] (4)

P(n)(XB,YB) ) C(n) exp(-Sn(XB,YB)) (5)

Sn(XBst
(n),YBst

(n)) ) 0

H(xb, yb; ∇xbsn(xb, yb), ∇ybsn(xb, yb)) ) 0

H(xb, yb; pbx, pby) )

∑
rx,ry

w(xb, yb; rbx, rby)(exp(rbx‚pbx + rby‚pby) - 1) (6)

pbx ≡ ∇xbsn(xb, yb), pby ≡ ∇ybsn(xb, yb)

xb ≡ XB/Ω, yb ≡ YB/Ω, w(xb, yb; rbx, rby) ≡ W (XB, YB; rbx, rby)Ω

(7)

sn(xb, yb) ≡ Sn(XB,YB)/Ω (8)

fB‚gb ≡ ∑
i)1

N

figi (9)

x̆i ) ∑
rx,ry

rx,iw(xb, yb; rbx, rby) exp(rbx‚pbx + rby‚pby)

y̆i ) ∑
rx,ry

rx,iw(xb, yb; rbx, rby) exp(rbx‚pbx + rby‚pby) (10)

p̆x,i ) -∑
rx,ry

(exp(rbx‚pbx + rby‚pby) - 1)∇x,iw(xb, yb; rbx, rby)

p̆y,i ) -∑
rx,ry

(exp(rbx‚pbx + rby‚pby) - 1)∇x,iw(xb, yb; rbx, rby)
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reactions listed in Table 1. The actionsn can be obtained from
the expression

We have made use of the relationH(x,p) ) 0, subtractingH in
the third line. Using the inequalityx exp(x) + 1 - exp(x) g 0
and the fact thatw is always positive, this equation makes it
clear that along a fluctuational path away from the stationary
state and determined by Hamilton’s equations of motion, we
have

A still more important fact for our later analysis is that

We have made use of the relationsp ) ∇sn(x) andH(x,p) ) 0.
Now using the inequality,x + 1 - exp(x) e 0, we see that

Hence, the stationary solution to the master equation,sn(x,y), is
a Lyapunov function for the deterministic path from(x,y) to
the attractor of the stable stationary state.

IV. Thermodynamic Analysis of a Reaction-Diffusion
System

In ref 12, a connection was made between the stationary
solutionsn(x,y) for a homogeneous system and a thermodynamic
excess work functionφ0. For a system with two intermediates
x andy, for example, we can write

where(x0,y0) define a reference state according to the equations

which hold for an equivalent linear system.

The displacements dnx, dny, etc., are along the most probable
fluctuational path. Since the momentump is the gradient of
the action, ds and therefore dφ0, are exact differentials.

For a system ofN boxes distributed in one dimension, the
state function of the total excess work is the sum of that in
each box, eq 17. The reference state(X0,Y0) is determined

according to the same prescription as in the homogeneous case,
except now in the full 2N-dimensional space. Since dφ is an
exact differential, we can choose to perform the integration along
the deterministic path.

V. Condition for Equistability in Terms of Fluctuations

Figure 1 shows the resulting stable front when a system at
equistability is allowed to evolve deterministically from a
discontinuous initial state with SS1 in the left half of the system
and SS3 in the right half. This process results in a change in
the thermodynamic excess work functionΦ0. But at equista-
bility, translation of the entire front to the left or the right does
not change the value ofΦ0. This can be understood by
considering the cases in which the control parameter is
infinitesimally smaller or larger than its value at equistability.
If SS1 is slightly more stable than SS3, the deterministic motion
of the front will be a translation to the right. SinceΦ0 is a
Lyapunov function for the system,∆Φ0 for this process must
be negative. Likewise, if SS3 is more stable than SS1, a
translation of the front to the left will also result in a negative
∆Φ0. So at equistability, the limiting value of∆Φ0 for an exact
translation must be zero.

SinceΦ0 is a state function, its value for a change from all
SS1 to a stable front in the left half of the system only (see
Figure 2) is equal to the sum of∆Φ0 for the creation of the
front from the discontinuity and zero for the translation of the
front. This is exactly the value for a change from SS3 to a
stable front in the right half of the system. Therefore

and, sinceΦ0 is a state function, we have

sn(xb(t),yb(t)) ) ∫t0

t
dt′(pbx‚ ẋb + pby‚ ẏb) (11)

) ∫t0

t
dt′∑

rx,ry

( rbx‚pbx + rby‚pby)w(xb, yb; rbx, rby) ×

exp(rbx‚pbx + rby‚pby)

) ∫t0

t
dt′∑

rx,ry

[( rbx‚pbx + rby‚pby) exp(rbx‚pbx +

rby‚pby) + 1 - exp(rbx‚pbx + rby‚pby)]w(xb, yb; rbx, rby)

dsn(xb(t),yb(t))

dt |
fluc

g 0 (12)

dsn(xb,yb)

dt |
det

) ∇xbsn(xb,yb)‚dxb
dt |det

+ ∇ybsn(xb,yb)‚
dyb(xb,yb)

dt |
det

) ∑
rx,ry

pbx‚ rbxw(xb, yb; rbx, rby) +

pby‚ rbyw(xb, yb; rbx, rby) (13)

) ∑
rx,ry

(pbx‚ rbx+ pby‚ rby + 1 -

exp(pbx‚ rbx + pby‚ rby))w(xb, yb; rbx, rby)

dsn(xb,yb)

dt |
det

e 0 (14)

ds ) 1
kTV

dφ
0

) (µx - µx0) dnx,fl + (µy - µy0) dny,fl (15)

px ) ln(x/x0) (16)

py ) ln(y/y0)

Figure 2. Translation of the front to the left side of the system has a
change inΦ0 of ∆Φ0 ) 0. The same is true for translation to the right
side.

Φ0(X,Y) ) ∫s

(X,Y)∑
i)1

N

kTVdφi
0 (17)

) kTV∑
i)1

N

[∫s

(X,Y)
dXi ln(Xi/Xi

0) +

dYi ln(Yi/Yi
0)]

∆Φ0(SS1 f SF) ) ∆Φ0(SS3 f SF) (18)

∆Φ0(SFf SS1) ) ∆Φ0(SFf SS3) (19)
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We see that the stationary probability distribution of the
master equation in the eikonal approximationΦ0 is not only a
Lyapunov function for the deterministic reaction-diffusion
equations, but also provides a measure of the relative stability
and equistability as interpreted by inhomogeneous fluctuations.
There is, thus, an analogy of equistability in systems with
multiple steady states and phase bistability at equilibrium. As
an example, an experiment conducted with liquid water and
water vapor as outlined in the discussion of Figure 1 shows
propagation of the phase front in either one or the other direction
but at equilibrium the front velocity is zero. Further, at
equilibrium the probability of a fluctuation converting one phase
to the other equals that of the reverse process.

In this work, we provide an additional physical meaning of
equistability. At equistability, the probability of a fluctuation
from the stable front to all steady-state 1 is equal to the
probability of a fluctuation from the stable front to all steady-
state 3, eq 19. Thus, we have established a new criterion of
equistability of multiple stationary states, one in terms of
inhomogeneous fluctuations in such systems.
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