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Relative Stability of Multiple Stationary States Related to Fluctuations
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We apply the eikonal approximation to the stochastic master equation for readiffusion systems. Its
stationary solution is expressed as an excess work and is shown to be a Lyapunov function for the deterministic
evolution of inhomogeneous systems. From this result we establish a new stochastic criterion of relative
stability and equistability of systems with multiple homogeneous stationary states in terms of inhomogeneous
fluctuations.

I. Introduction

Chemical systems with nonlinear kinetics may have multiple
stationary states for given constraints that maintain the system
far from equilibrium. The relative stability of such multiple
stationary states has been discussed in prior stiidie€onsider
an experimental arrangement in which a system with two stable
stationary states and one unstable stationary state is maintained ~ 1.75 * 1 1
in one of its stable stationary states (SS1) in one-half of a large -200 -100 0 100 200
container (see Figure 1) and the other half contains the system z (position)

in 'tf‘:’, other Stablg stationary state (_553)' On removal of a Figure 1. Initially (—) the left half of the system has the concentration
partition separating these two stationary states, a smoothyalyes of stationary state 1 and the right half of the system has the
concentration profile will develop since the concentration of concentration values of stationary state 3. At equistability, evolution
any intermediate species in stable stationary state 1 is likely to of the system according to the deterministic equations of motions leads
be different from that in stable stationary state 3. Then one of to the stable front-¢-) shown.
three possibilities will occur: the profile will travel in the
direction of increasing the domain of the more stable stationary @1d. thus, extend the concept of the excess wbfko such
state (either SS1 or SS3). However, at equistability of the two Systems. We show thét?is a stationary solution of the master
stationary states, the velocity of the developed front is zero. €guation, a Lyapunov function for the deterministic evolution
This result can be obtained from the solution of deterministic ©f inhomogeneous reactiemiffusion systems, and a criterion
reaction-diffusion equations and has been tested in experi- of relative stabllllty fqr multiple statlor!ary states in such systems.
mentst5 Thus, we obtain an important new view of relative stability and

The deterministic reactiondiffusion equations have an equiste_tbility of systems with multiple hompgen_eous stationary
infinity of Lyapunov functions that are evolution criteria for states in terms of inhomogeneous fluctuations in these systems.
the deterministic motion, such as front propagation in either
direction in the system just discussed. Inref 1 we showed that || The System
any Lyapunov functionb that can be expressed as an integral
along the deterministic path of the system correctly predicts
the observed relative stability of two steady states in the limit
of large systems. One such Lyapunov function is an excess
work ®4e;, Which has been defined by means of the deterministic
reaction-diffusion equation§-11 ®qe is not a state function
but is fully defined along the deterministic trajectories. It is,
in general, not related to fluctuations in nonlinear systems, i.e.,
to stationary solutions of the stochastic master equations.

Stationary solutions of the master equations for multivariable
homogeneous chemical systems far from equilibrium can be
discussed, in the eikonal approximation, in terms of an excess
work ®°, which is a state function, a Lyapunov function for k Ky ke
the stable stationary states of the system, and is, to logarithmic A=X 2Y + X=3Y Y=B 1)
accuracy, a solution of the master equation, as shown for ke ke ke
homogeneous systems of this kiFd!*

In the present work, we apply the eikonal approximation to
the stochastic master equation for reacttdiffusion systems

245 4 T

2.05 ¢
1.95 +
1.85 + .

X (concentration)

We will briefly describe the reactiondiffusion system.
Consider as a sufficient example for any multivariable system
the isothermal Sel’kov model with rate coefficients and constant
concentrations of A and B chosen such that there are three
stationary-state solutions of the homogeneous reaction equations
(i.e., the rate equations with no diffusion terms). Two of these
states, (X,Y1) and (>€,Y3), are stable and the other,{X?), is
unstable.

The equations given in eq 1 are for a system residing in one
spatial dimension. The extension to a three-dimensional system

is straightforward. The partial differential equations that
represent the reactierdiffusion equations for this model can
be transformed into ordinary differential equations by discretiz-
*To whom correspondence should be addressed. ing the spatial variable into increments small enough that X
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TABLE 1: Elementary Reactions for a Sel’kov Model reactions in Table 1 and as a whole the system obeys the master
System Distributed in One Dimensioi equation
elementary reaction rxandry WIX,Y; I, Ty)
— aP(X Y; i)
A_’Xi rx,i—-i-l ki A - = = 7 7.
XA = ox = Y IWIX = T ¥ = Ty TPV =
Xi +2Y; — 3Y; ryi=-—1 K3X|Y|2 Mly o o
ryi=+1 WX, YTy, TOPCXY;H)] (4)
3Y; — Xi + 2Y; ryi=+1 k4YI3
Mvi = -1 where the sum is over the elementary reactions listed in Table
Yi —B lyi = -1 K5Y| . .
B—Y, ryi = +1 kB 1, and we denote the set of concentration valp&sY;) in the
Xo— X o= +1 hXo N boxes as vector§V andY. W(XY;Fy[y) is the_probability
X1 Xo 1= — X1 per unit time of a transition frondX)Y) to (X + Tyx,Y + Ty).
Yo— Y1 fya=+1 Yo According to the eikonal (instanton) approximation, the
I}:;{O ;yv}:_ 1 i;gl stationary distribution about theth attractor (stable state of
' . r:+1— 11 the entire system) is given by
Xiv1 = Xi rvi=-+1 OhXit1 S o o
Meir1=—1 P(XY) = C™ exp—S(X, 5
Y P oy XY PES(X.Y)) (5)
lyji+1= +1
Yier Y, ryi=+1 dyYitg Sq(XgT),Y(n)) =
lyi+1= -1
a All reactions including species with an indegenoteN reactions, <> v S v v U)) —
one for each box. The term& are the transition probabilities in the H(X, y: V*S“(X’ y), VVS“(X’ y)=0
master equation, eq 4.
and Y are essentially constant in a given increment. Labeling A% ¥i P ﬁy) -
the various increments with the indexand the incremeniz, ZW(T(' Vit "r’y)(exp(Fx-f)x + ?y'_ﬁy) —1) (6)
we have Pely
L=NAz z=iAz 2=0,z=L 2) Py = Visi(X, ¥), By = Vys(X, Y)

wheres, is obtained by solving Hamilton’s equations of motion

nd th terministic reactieriffusion tion m o
and the dete stic reactieriffusion equations become for the HamiltonianH.

dX Here we have defined the symbols
— =kA — kX, — kX, Y2+ kY2 + - - .
dt 5 X=XQy=YQ WXV, T, T)=W(X Y, T, T)Q
X
—= —2X, + X; 7
AZZ( i+1 1) ( )
"~ and
=kB — kY, — kX;Y;P — kY2 + - .
5 Si(X, ¥) = §(XY)/Q (8)
Y

(Vi = 2Yi + i) (3) and the dot product has the usual vector meaning given by

AZ
To examine the relative stability of the stable steady states, -
we take the requirement that the concentrations of X and Y at f-o= V4 fig, ©)
the left side of the system are held fixed at the values of one =

stable steady state and at the right they have the values of the

other steady state, i.e., o) = (XL,Y1) and X+, Yn+1) =
(X3,Y3) for all t, as boundary conditions for the system. As an
initial condition, one-half of the system is given the value of

The sum is over values for dl boxes. Q is the volume of
the system. These equations of motion have the form

stable steady-state 1 (SS1) and the other half is given the value %= eryiw(x, Y; T Ty) €XPE P+ Ty Py)

of stable steady-state 3 (SS3) (see Figure 1). When the system Puly

is allowed to evolve according to eq 3, a continuous front forms I L

at the point of discontinuity and, depending on the relative Vi = Erx,iW(Xa Y; Tw Ty) exp( P+ TPy (10)
stability of the stable steady states, travels without changing Daly

form in the direction that creates the more stable state. If the

parameters dictate that the continuous front does not travel, the Pyi z(exp(-r'x.r)x +T,0P,) — DV WX, ¥ T, 7))

system is said to be “at equistability.” o
Ill. Eikonal Approximation to the Stochastic Master _ = w - =
Equation for Reaction—Diffusion Systems Pyi = Z(e"p“x Pt Ty By — DV, WX, ¥ T T)

Ialy
The behavior of the two species in each of theboxes
described in the last section is given by thé\tb 4 elementary where the sum overy andry is a sum over all elementary
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reactions listed in Table 1. The actisncan be obtained from
the expression
= L A o
S(X (1), (1) = j;o dt' (P X + ByY) (11)
t e o
=j:0 dt'Z(rx-pX+ SPIWR, YV, T, T,) x
oly

exp(f Pyt TyPy)

= [odv Y (TP, + T B) exp, B, +

Txly

TyPy) + 1= exp(fePyt Ty PYIW(X, Y5 Ty )

We have made use of the relatiblix,p) = 0, subtractingH in

the third line. Using the inequalityexpf) + 1 — expk) = 0

and the fact thatv is always positive, this equation makes it
clear that along a fluctuational path away from the stationary
state and determined by Hamilton’s equations of motion, we
have

dsy(X(1), (1))

i (12)

fluc
A still more important fact for our later analysis is that

dy(x.y)
dt

< =y OX

ds,(X,Y)
- = Vasn X,y -—
X dt

dt

det + Vysn(xa)’)'

det det

B TR, Vi T, T)) +
Py T W(X, ¥; Ty, Ty) (13)

(P Tyt PyTy +1—
expP,Tx+ Py TIWX, ¥; T T))
We have made use of the relatigns= Vs,(x) andH(x,p) = 0.
Now using the inequalityx + 1 — expf) < 0, we see that
ds,(X,Y)

dt

< 14
det ( )
Hence, the stationary solution to the master equatigr,y), is
a Lyapunov function for the deterministic path frafxy) to
the attractor of the stable stationary state.

IV. Thermodynamic Analysis of a Reaction-Diffusion
System

In ref 12, a connection was made between the stationary
solutionsy(x,y) for a homogeneous system and a thermodynamic
excess work functiog®. For a system with two intermediates
x andy, for example, we can write

1

dS=1Tv

dg°
= (uy = ty0) Ay + (uey — o) dnyg (15)
where(x2,y%) define a reference state according to the equations

p, = In(x/xX)

py = In(y/y")

which hold for an equivalent linear system.

(16)
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Figure 2. Translation of the front to the left side of the system has a
change in®° of A®° = 0. The same is true for translation to the right
side.

The displacementsg, dny, etc., are along the most probable
fluctuational path. Since the momentyms the gradient of
the action, & and therefore ¢°, are exact differentials.

For a system o boxes distributed in one dimension, the
state function of the total excess work is the sum of that in
each box, eq 17. The reference sté&,Y%) is determined

N
X Y) = (Y KTVdg)

17)

N
- kTVZ[ S dx In(ix) +
dY; In(Y/Y)]

according to the same prescription as in the homogeneous case,
except now in the full R-dimensional space. Sincevds an
exact differential, we can choose to perform the integration along
the deterministic path.

V. Condition for Equistability in Terms of Fluctuations

Figure 1 shows the resulting stable front when a system at
equistability is allowed to evolve deterministically from a
discontinuous initial state with SS1 in the left half of the system
and SS3 in the right half. This process results in a change in
the thermodynamic excess work functidrf. But at equista-
bility, translation of the entire front to the left or the right does
not change the value o®° This can be understood by
considering the cases in which the control parameter is
infinitesimally smaller or larger than its value at equistability.
If SS1 is slightly more stable than SS3, the deterministic motion
of the front will be a translation to the right. Sineg° is a
Lyapunov function for the systerd\@° for this process must
be negative. Likewise, if SS3 is more stable than SS1, a
translation of the front to the left will also result in a negative
A®O. So at equistability, the limiting value @®° for an exact
translation must be zero.

Since®? is a state function, its value for a change from all
SS1 to a stable front in the left half of the system only (see
Figure 2) is equal to the sum &®° for the creation of the
front from the discontinuity and zero for the translation of the
front. This is exactly the value for a change from SS3 to a
stable front in the right half of the system. Therefore

ADY(SY — SH = AD(SS— SPH (18)
and, since®? is a state function, we have
ADPYSF— S9) = ADPYSF— S) (19)
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We see that the stationary probability distribution of the 197(2)64Kii§%' ~:<J-_Cherjr3- Pchﬁ/SlwghG?& ggwégeziégg J|J< Chen}P Phys.
master equation in the eikonal appr_o>_<|matrbﬁ is not only a Naﬂ?Ac'ad_ Sei L(Je.lé?&:l97.8 75?2623.)/ 8 69, - Keizer, JEroc.
Lyapunov function for the deterministic reactiediffusion
equations, but also provides a measure of the relative stability ~ (3) Graham, RPhys. Re. A 1981, 23, 1302. Graham, R. INoise in -
and equistability as interpreted by inhomogeneous quctuatio_ns.ggnm"gr?(?gredeg'g%Sé;ﬁg‘:ggzys'lgéb.'\/'cc"”t°°k' P. V. E, Bds;
There is, thus, an analogy of equistability in systems with
multiple steady states and phase bistability at equilibrium. As  (4) Foerster, P.; Zhang, Y.; Ross,d.Phys. Chem1993 97, 4708.
an example, an experiment conducted with liquid water and (5) Wolff, A. N.; Hjelmfelt, A.; Ross, J.; Hunt, P. MJ. Chem. Phys.
water vapor as outlined in the discussion of Figure 1 shows 1993 99, 3455.
propagation of the phase front in either one or the other direction  (g) Ross, J.; Hunt, K. L. C.; Hunt, P. M. Chem. Phys1988 88,
but at equilibrium the front velocity is zero. Further, at 2719.
equilibrium the probability of a fluctuation converting one phase (7) Hunt, P. M.; Hunt, K. L. C.: Ross, . Chem. Phys199Q 92,
to the other equals that of the reverse process. 2572.

In this work, we provide an additional physical meaning of gy} ¢ « | c.; Hunt, P. M.; Ross, Annu. Re. Phys. Chem199Q
equistability. At equistability, the probability of a fluctuation 41 409
from the stable front to all steady-state 1 is equal to the _ _ _ _
probability of a fluctuation from the stable front to all steady- 19959295322566?" Harding, R. H.; Wolff, A. N.; Chu, X Chem. Phys
state 3, eq 19. Thus, we have established a new criterion of
equistability of multiple stationary states, one in terms of

(10) Ross, J.; Hunt, K. L. C.; Hunt, P. M. Chem. Phys1992 96,
. . . 618.
inhomogeneous fluctuations in such systems.

(11) Ross, J.; Chu, X.; Hjelmfelt, A.; Velarde, M. Phys. Chenil992
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